skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Broshkevitch, Adam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Thin, flexible sheets can be patterned and bonded to form internal fluidic networks, which enable actuation, sensing, and control, but failure of these sheet-based systems—and how to take advantage of this failure—remains relatively unexplored. Here, we examine this concept using heat-sealable textiles as a material platform. We determine the effects of geometry and material processing on bond strength and burst pressure; these findings can ensure a sheet-based fluidic system is sufficiently robust for a given use case. Building on this framework, we introduce a fuse-like component into which failure is deliberately programmed. In addition to limiting damage in the case of overpressurization, we leverage this programmed failure to enable distinct capabilities including (1) the binary selection of operating modes and (2) the sequencing of a series of tasks with a single pressure input. These findings will facilitate the development of more intelligent sheet-based fluidic systems. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026